The emergence of inventive new materials, engineering breakthroughs, and advances in microtechnology has served as the catalyst for innovation in modern prosthetics development. As a result of these advances, modern prostheses are more lightweight, more responsive, and more comfortable than models developed even just a few years ago. Wearers of prostheses have more options than ever before, allowing amputees to participate in life activities never before thought possible.
A number of new technologies are just beginning to become a reality for prosthetic wearers. Neuroelectronics is one of the industrys newest fields. Scientists studying cognitive control signals report that eavesdropping on neurons in the brain allow them to predict how the body will respond. The signals can be directed to a prosthetic brain, or electrical processing center, which interprets the signals and moves the prosthetic limb. For example, consider the individual who goes to reach for a book. As he decides to reach, he sends an invisible electrical signal to the brain that tells the body it needs to prepare to move. The brain receives the signal and decodes it, sending a signal to the right arm...